Engineering and technology education teachers are expected to have a broad and comprehensive understanding of the knowledge and skills needed for this educator license, and to use that knowledge to help students prepare for the challenges and opportunities of the twenty-first century. This requires the ability to identify, comprehend, analyze, synthesize, and evaluate the basic principles, fundamental concepts, and essential content defined in these standards, and to apply that knowledge to the tasks of planning and delivering effective instruction and assessment.
Table of Contents

Engineering and Technology Education Educator Standards 1

Selected Bibliography of Standards and Sources Related to Engineering and Technology Education ... 6

Alignment of Educator Standards with State and National Standards 8
Standard 1: Nature of Engineering and Technology
Engineering and technology education teachers have a broad and comprehensive understanding of the historical, cultural, political, societal, and economic roles of engineering and technology.

Standard 2: The Engineering Design Process
Engineering and technology education teachers have a broad and comprehensive understanding of the characteristics of the engineering design process and its role in technology systems.

Standard 3: Energy Systems and Power Systems
Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in energy systems and power systems and the scientific and engineering principles underlying these systems.

Standard 4: Communication Systems
Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in communication systems and the scientific and engineering principles underlying these systems.

Standard 5: Transportation Systems
Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in transportation systems and the scientific and engineering principles underlying these systems.

Standard 6: Manufacturing Systems
Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in manufacturing systems and the scientific and engineering principles underlying these systems.

Standard 7: Construction Systems
Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in construction systems and the scientific and engineering principles underlying these systems.

Standard 8: Biotechnology Systems and Medical Systems
Engineering and technology education teachers have a broad and comprehensive understanding of the basic tools, equipment, materials, and procedures used in biotechnology systems and medical systems and the scientific and engineering principles underlying these systems.

Standard 9: Instruction and Assessment in Engineering and Technology Education
Engineering and technology education teachers have a broad and comprehensive understanding of content-specific instruction and assessment in engineering and technology education.
The Indiana Educator Standards for Engineering and Technology Education describe the knowledge and skills that teachers need to help students achieve the learning outcomes defined by the Indiana Academic Standards for Technology Education. A link to relevant portions of the Indiana Academic Standards can be found below.

Technology Education
Standard 1: Nature of Engineering and Technology

Engineering and technology education teachers have a broad and comprehensive understanding of the historical, cultural, political, societal, and economic roles of engineering and technology, including:

1.1 the interrelationships among technology, science, mathematics, and engineering
1.2 the historical, cultural, political, societal, and economic contexts of engineering and technology
1.3 the effects of engineering and technology on the environment
1.4 the role of society and government in regulating and influencing engineering and technology
1.5 the role of business, business management, and professionalism in engineering and technology

Standard 2: The Engineering Design Process

Engineering and technology education teachers have a broad and comprehensive understanding of the characteristics of the engineering design process and its role in technology systems, including:

2.1 the systems model and steps in the engineering design process
2.2 applications of the engineering design process
2.3 troubleshooting technology systems
2.4 the role of research and development, innovation, and experimentation in technology systems
2.5 the role of quality control in technology systems

Standard 3: Energy Systems and Power Systems

Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in energy systems and power systems and the scientific and engineering principles underlying these systems, including:

3.1 principles of science and engineering in energy and power systems
3.2 tools, equipment, and materials used in energy and power systems
3.3 processes and procedures used in energy and power systems
Standard 4: Communication Systems

Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in communication systems and the scientific and engineering principles underlying these systems, including:

4.1 principles of science and engineering in communication systems
4.2 tools, equipment, and materials used in communication systems
4.3 processes and procedures used in communication systems

Standard 5: Transportation Systems

Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in transportation systems and the scientific and engineering principles underlying these systems, including:

5.1 principles of science and engineering in transportation systems
5.2 tools, equipment, and materials used in transportation systems
5.3 processes and procedures used in transportation systems

Standard 6: Manufacturing Systems

Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in manufacturing systems and the scientific and engineering principles underlying these systems, including:

6.1 principles of science and engineering in manufacturing systems
6.2 tools, equipment, and materials used in manufacturing systems
6.3 processes and procedures used in manufacturing systems

Standard 7: Construction Systems

Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in construction systems and the scientific and engineering principles underlying these systems, including:

7.1 principles of science and engineering in construction systems
7.2 tools, equipment, and materials used in construction systems
7.3 processes and procedures used in construction systems
Standard 8: Biotechnology Systems and Medical Systems

Engineering and technology education teachers have a broad and comprehensive understanding of the basic tools, equipment, materials, and procedures used in biotechnology systems and medical systems and the scientific and engineering principles underlying these systems, including:

8.1 principles of science and engineering in biotechnology and medical systems and in biotechnology and medical products
8.2 tools, equipment, and materials used in biotechnology and medical systems
8.3 processes and procedures used in biotechnology and medical systems
8.4 legal and ethical considerations in biotechnology and medical systems

Standard 9: Instruction and Assessment in Engineering and Technology Education

Engineering and technology education teachers have a broad and comprehensive understanding of content-specific instruction and assessment in engineering and technology education, including:

9.1 the Indiana Academic Standards for Technology Education
9.2 the ITEA/CTTE/NCATE Curriculum Standards and the ISTE National Educational Technology Standards
9.3 instructional strategies and resources for promoting students' understanding of concepts and skills related to engineering and technology and their relationship to other academic fields
9.4 strategies and skills for planning and designing engineering and technology education instruction, including the use of techniques and approaches that meet the needs of diverse learners
9.5 instructional strategies to promote student learning and to foster the development of critical-thinking, problem-solving, and performance skills in engineering and technology education
9.6 communication methods that promote student learning and foster active inquiry, interaction, and collaboration in the engineering and technology education classroom
9.7 strategies and skills for selecting, adapting, and using technological resources to support teaching and learning about engineering and technology
9.8 ways to design, create, and manage safe and effective laboratories and learning environments that promote students' success
9.9 strategies and skills for effectively assessing students' understanding and mastery of concepts and skills essential to engineering and technology as well as relevant out-of-content-area concepts
9.10 strategies and skills for using assessment data to adjust and modify instruction for diverse learners
State and National Standards and Curriculum Frameworks

Sources on Engineering and Technology Education Content

Sources on Student Learning and Pedagogical Methodology

Alignment of Educator Standards
with State and National Standards

<table>
<thead>
<tr>
<th>Indiana Educator Standards for Engineering and Technology Education</th>
<th>Indiana Academic Standards for Technology Education</th>
<th>Standards for Technological Literacy</th>
<th>ITEA/CTTE/NCATE Curriculum Standards</th>
<th>ISTE National Educational Technology Standards</th>
</tr>
</thead>
</table>
| **Standard 1: Nature of Engineering and Technology**
Engineering and technology education teachers have a broad and comprehensive understanding of the historical, cultural, political, societal, and economic roles of engineering and technology. | 1, 3, 6, 15, 16, 19 | 1-7 | 1, 2, 4 | 4 |
| **Standard 2: The Engineering Design Process**
Engineering and technology education teachers have a broad and comprehensive understanding of the characteristics of the engineering design process and its role in technology systems. | 2, 4-10, 14, 16 | 8-11 | 3, 4 | |
| **Standard 3: Energy Systems and Power Systems**
Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in energy systems and power systems and the scientific and engineering principles underlying these systems. | 4, 11-14, 16, 17, 18 | 12, 13, 16 | 5 | |
| **Standard 4: Communication Systems**
Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in communication systems and the scientific and engineering principles underlying these systems. | 4, 11-14, 16, 17, 18 | 12, 13, 17 | 5 | |
Alignment of Educator Standards with State and National Standards

<table>
<thead>
<tr>
<th>Indiana Educator Standards for Engineering and Technology Education</th>
<th>Indiana Academic Standards for Technology Education</th>
<th>Standards for Technological Literacy</th>
<th>ITEA/ CTTE/ NCATE Curriculum Standards</th>
<th>ISTE National Educational Technology Standards</th>
</tr>
</thead>
</table>
| **Standard 5: Transportation Systems**
 Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in transportation systems and the scientific and engineering principles underlying these systems. | 4, 11–14, 16, 17, 18 | 12, 13, 18 | 5 |
| **Standard 6: Manufacturing Systems**
 Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in manufacturing systems and the scientific and engineering principles underlying these systems. | 4, 11–14, 16, 17, 18 | 12, 13, 19 | 5 |
| **Standard 7: Construction Systems**
 Engineering and technology education teachers have a broad and comprehensive understanding of tools, equipment, materials, and procedures used in construction systems and the scientific and engineering principles underlying these systems. | 4, 11–14, 16, 17, 18 | 12, 13, 20 | 5 |
| **Standard 8: Biotechnology Systems and Medical Systems**
 Engineering and technology education teachers have a broad and comprehensive understanding of the basic tools, equipment, materials, and procedures used in biotechnology systems and medical systems and the scientific and engineering principles underlying these systems. | 4, 11–14, 16, 17, 19 | 4, 15 | 5 |
Standard 9: Instruction and Assessment in Engineering and Technology Education

Engineering and technology education teachers have a broad and comprehensive understanding of content-specific instruction and assessment in engineering and technology education.

<table>
<thead>
<tr>
<th>Indiana Educator Standards for Engineering and Technology Education</th>
<th>Indiana Academic Standards for Technology Education</th>
<th>Standards for Technological Literacy</th>
<th>ITEA/ CTTE/ NCATE Curriculum Standards</th>
<th>ISTE National Educational Technology Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 9: Instruction and Assessment in Engineering and Technology Education</td>
<td></td>
<td>6–9</td>
<td>1a–1d; 2a–2d; 3a–3d; 4a–4d; 5a–5d</td>
<td></td>
</tr>
</tbody>
</table>