End-of-Course Assessment Algebra II Reference Sheet

Binominal Theorem

$$(a + b)^n = a^n + \frac{n}{1!} a^{n-1} b^1 + \frac{n(n-1)}{2!} a^{n-2} b^2 + \frac{n(n-1)(n-2)}{3!} a^{n-3} b^3 + ... + b^n$$
 $(a + b)^n = {}_n C_n a^n + {}_n C_{n-1} a^{n-1} b^1 + {}_n C_{n-2} a^{n-2} b^2 + {}_n C_{n-3} a^{n-3} b^3 + ... + {}_n C_0 b^n$

 Standard Form of a
 Compounding Interest Formulas

Quadratic Equation $ax^2 + bx + c = 0$

Quadratic Formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (where $ax^2 + bx + c = 0, a \neq 0$)

Periodic: $A = P (1 + \frac{r}{n})^{nt}$

Continuous: $A = Pe^{rt}$

(where A is the amount due on a principal P invested for t years at an annual interest rate rcompounded *n* times per year)

Combination: $_{n}C_{r} = C(n, r) = \frac{n!}{(n-r)! r!}$ **Permutation:** $_{n}P_{r} = P(n, r) = \frac{n!}{(n-r)!}$

Sequences and Series

Arithmetic sequence:
$$a_n = a_1 + (n-1)a_n$$

Arithmetic series: $S_n = \frac{n}{2} (a_1 + a_n)$

Geometric sequence: $a_n = a_1 r^{n-1}$ or $a_n = a_{n-1} r$

Geometric series:
$$S_n = \frac{a_1 - a_1 r^n}{1 - r}$$
, where $r \neq 1$

(where a_1 is the first term, n is the number of the term, d is the common difference, r is the common ratio, a_n is the *n*th term and S_n is the sum of the first *n* terms)

General Fo	ormula for	Growth	and	Decay
------------	------------	--------	-----	-------

 $A = A_0 e^{kt}$ (where A is the amount at the time t, A_0 is the amount at t = 0, and k is a constant) $e \approx 2.718$

Figure	Formulas for Volume (V) and Surface Area (SA)	
Rectangular Solid	$V = l \times w \times h = \text{length} \times \text{width} \times \text{height}$ $SA = 2 \times l \times w + 2 \times w \times h + 2 \times h \times l$	
Cylinder (total)	$V = \pi r^{2}h = \pi \times \text{square of radius} \times \text{height}$ $SA = 2\pi rh + 2\pi r^{2}$ $SA = 2 \times \pi \times \text{radius} \times \text{height} + 2 \times \pi \times \text{square of radius}$	
Sphere	$V = \frac{4}{3}\pi r^{3} = \frac{4}{3} \times \pi \times \text{ cube of radius}$ $SA = 4\pi r^{2} = 4 \times \pi \times \text{ square of radius}$ $\pi \approx 3.$	
Cone	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3} \times \pi \times \text{square of radius} \times \text{height}$	
Pyramid	$V = \frac{1}{3}Bh = \frac{1}{3} \times \text{area of base} \times \text{height}$	
Prism	V = Bh = area of base × height	

End-of-Course Assessment Algebra II Reference Sheet

Conic Section		Equation	Characteristics	
Circle	P(x, y)	$(x-h)^2 + (y-k)^2 = r^2$	Center (<i>h</i> , <i>k</i>) radius <i>r</i>	
Parabola	V V(h, k) V	$y = a(x-h)^2 + k$	axis of symmetry $x = h$ directrix $y = k - \frac{1}{4a}$ focus $(h, k + \frac{1}{4a})$	
	V(h, k)	$x = a(y-k)^2 + h$	axis of symmetry $y = k$ directrix $x = h - \frac{1}{4a}$ focus $(h + \frac{1}{4a}, k)$	
Ellipse	b $C(h,k)$ a x	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	foci $(h \pm c, k)$, where $c^2 = a^2 - b^2$	
	y a C $(h,k)bx$	$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$	foci $(h, k \pm c)$, where $c^2 = a^2 - b^2$	
Hyperbola	(h, k) (h, k) ($\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	foci $(h \pm c, k)$, where $c^2 = a^2 + b^2$	
	$\begin{array}{c} & & \\$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	foci $(h, k \pm c)$, where $c^2 = a^2 + b^2$	