Indiana Department of Education
Academic Standards Course Framework

MECHANICAL DRAFTING AND DESIGN II

Mechanical Drafting and Design II covers working drawings both in detailing and assembly. Topics include: fastening devices, thread symbols and nomenclature, surface texture symbols, classes of fits, and the use of parts lists, title blocks and revision blocks. This course will also focus on advanced CAD features, including fundamentals of three-dimensional modeling for design. An overview of modeling, graphical manipulation, part structuring, coordinate system, and developing strategies of modeling will also be included. Advanced CAD will enable the student to make the transition from 2D drafting to 3D modeling. Students will draw and calculate three dimensional problems. Theory and methods include graphic developments and the relationships between points, lines and planes, curved lines and surfaces, intersections, and development. Computer software and hardware experiences, as they relate to drafting and design, will be covered.

- DOE Code: 4838
- Recommended Grade Level: Grade 12
- Recommended Prerequisites: Mechanical Drafting and Design I
- Credits: 2-3 credits per semester, maximum of 6 credits
- Counts as a Directed Elective or Elective for the General, Core 40, Core 40 with Academic Honors and Core 40 with Technical Honors diplomas
- This course is aligned with postsecondary courses for Dual Credit
 - Ivy Tech
 - DESN 104 – Mechanical Graphics
 - DESN 220 – Advanced CAD
 - Vincennes University
 - DRAF 120 – Computers for Technology
 - DRAF 150 – Descriptive Geometry

Dual Credit
This course provides the opportunity for dual credit for students who meet postsecondary requirements for earning dual credit and successfully complete the dual credit requirements of this course.

Application of Content and Multiple Hour Offerings
Intensive laboratory applications are a component of this course and may be either school based or work based or a combination of the two. Work-based learning experiences should be in a closely related industry setting. Instructors shall have a standards-based training plan for students participating in work-based learning experiences. When a course is offered for multiple hours per semester, the amount of laboratory application or work-based learning needs to be increased proportionally.

Career and Technical Student Organizations (CTSOs)
Career and Technical Student Organizations are considered a powerful instructional tool when integrated into Career and Technical Education programs. They enhance the knowledge and skills students learn in a course by allowing a student to participate in a unique program of career and leadership development. Students should be encouraged to participate in SkillsUSA, the CTSO for this area.

<table>
<thead>
<tr>
<th>Content Standards</th>
</tr>
</thead>
</table>

Mechanical Drafting and Design II, 7-11-14, Page 1 of 4
Domain – History of Tool Technology
Core Standard 1 Students analyze the evolution of tool technology.

Standards
MDII-1.1 Describe the evolution of machining
MDII-1.2 Research ISO standards
MDII-1.3 Identify casting processes
MDII-1.4 Research robotics used in tool and die processes

Domain – Utilize the Design Process and Tools in Mechanical Drafting
Core Standard 2 Students analyze the design process used in mechanical drafting applications.

Standards
MDII-2.1 Conceptualize sketches and diagrams that demonstrate problem solving of programmatic issues
MDII-2.2 Utilize fundamentals of formal conceptual relationships, design methodology, and design process
MDII-2.3 Develop basic spatial and compositional ideas introduced through the study of typology, diagrams, and process of conceptualization
MDII-2.4 Demonstrate an ability to represent ideas in form and space, as a conceptual and cultural response to program, type, mechanical language and design methods
MDII-2.5 Analyze forces and loads on a structure
MDII-2.6 Identify line weights and how they relate to specific line types
MDII-2.7 Apply industry standards in mechanical drafting

Domain – Mathematical Concepts Found in Mechanical Drafting
Core Standard 3 Students apply and adapt math concepts to design processes.

Standards
MDII-3.1 Calculate distances, surface area, volumes, slope, and angles
MDII-3.2 Understand and apply stress analysis to an object

Domain – Solving Spatial Problems Using Descriptive Geometry
Core Standard 4 Students analyze drawing concepts to solve spatial problems using descriptive geometry.

Standards
MDII-4.1 Apply the rules of projection to solve for the other views given two views of lines, points, and/or surfaces
MDII-4.2 Determine graphically the true length of lines
MDII-4.3 Measure angles and distances to properly close polygons given the bearings and distances of all but one side of the polygon
MDII-4.4 Draw successive auxiliary views of objects given two views
MDII-4.5 Solve inclination problems
MDII-4.6 Determine the edge view of a surface given other views
MDII-4.7 Determine the point view of a line given other views
MDII-4.8 Draw the true shape of a surface given other view
MDII-4.9 Determine the visibility of two non intersecting objects
MDII-4.10 Determine the shortest distance from a point to a plan given other views
MDII-4.11 Find the shortest distance between two parallel planes given other views
MDII-4.12 Determine the shortest distance between two lines given other views
MDII-4.13 Determine the intersection of a line and a surface
MDII-4.14 Find the intersection of two surfaces
MDII-4.15 Determine the angle between two lines
MDII-4.16 Determine the dihedral angle between two surfaces
MDII-4.17 Find the resultant force of three concurrent coplanar forces
MDII-4.18 Determine the resultant force of three concurrent non-planar forces
MDII-4.19 Design flat pattern layouts of circular and cone shaped objects
MDII-4.20 Develop flat pattern layouts of flat sided objects
MDII-4.21 Determine the visibility of a line intersecting a surface
MDII-4.22 Find the visibility of lines of an object

Domain – Mechanical Graphics
Core Standard 5 Students prove understanding of mechanical concepts that connect to industry standard drawings.

Standards
MDII-5.1 Identify and draw various fastening devices
MDII-5.2 Draw thread symbols and understand thread nomenclature
MDII-5.3 Develop proper surface texture symbols
MDII-5.4 Calculate classes of fits
MDII-5.5 Develop a parts list
MDII-5.6 Complete accurate title and revision blocks
MDII-5.7 Research and utilize various standard blocks
MDII-5.8 Develop detailed part and assembly drawings
MDII-5.9 Determine tolerances on parts

Domain – Solving Advanced Design Challenges in Mechanical Drafting
Core Standard 6 Students create 3D CAD drawings to validate their knowledge of mechanical drafting.

Standards
MDII-6.1 Understand the similarities and differences between 2D and 3D models
MDII-6.2 Utilizing precision measuring tools to determine correct measurements
MDII-6.3 Manage 3D space
MDII-6.4 Create, modify, and use 3D wire frame, surface, and solid models
MDII-6.5 Construct any surface or solid model
MDII-6.6 Create production drawings of the 3D models
MDII-6.7 Demonstrate an understanding of terminology

Domain – Careers in Mechanical Drafting
Core Standard 7 Students evaluate and explore mechanical careers and opportunities.

Standards
MDII-7.1 Compare mechanical drafting careers
MDII-7.2 Investigate mechanical drafting opportunities offered by a technical school or college
MDII-7.3 Determine mechanical drafting occupation wages/salaries
MDII-7.4 Explore mechanical drafting job outlook information
MDII-7.5 Participates job shadowing of an mechanical job
MDII-7.6 Research international mechanical drafting opportunities